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In the limiting case of the free-electron theory where the electron motion is constricted to one 
dimension, the one-dimensional Coulomb potential gives rise to divergent interaction integrals. It is 
shown that a proposal by Olszewski to remove the divergenses by first evaluating the integrals in the 
three-dimensional case and then passing to the limit of one dimension only is incorrect, and that 
convergent integrals may only be obtained by suitably modifying the original one-dimensional 
Coulomb potential between particles. 

In dem Grenzfall des Modells der ,,Freien Elektronen", in dem die Elektronenbewegung auf eine 
Dimension eingeschriinkt ist, ergibt das eindimensionale Coulombpotential divergente Wechsel- 
wirkungsintegrale. Es wird gezeigt, dab ein Vorschlag von Olszewski zur Aufhebung der Divergenz 
durch Ubergang yon dreidimensionalen zum eindimensionalen Integral falsch ist. Konvergente Inte- 
grale kiSnnen nur durch geeignete Ver~inderung des urspriinglichen eindimensionalen Coulomb- 
potentials erhalten werden. 

Dans le cas limite de la th~orie de l'+lectron libre/t une dimension, Ie potentiel coulombien donne 
lieu ~t des int6grales d'interaction divergentes. On montre que la proposition d'Oszewski pour 61iminer 
les divergences, en 6valuant d'abord les int~grales tridimensionnelles et en passant ~t la limite ~t une 
dimension, est incorrecte et que des int6grales convergentes ne peuvent atre obtenues qu'en modifiant 
le potentiel coulombien unidimensionnel entre particules. 

Introduction 

Al though  the one -d imens iona l  free-electron (FE) mode l  for con juga ted  
molecules  offers a way of  avo id ing  the ma thema t i c a l  pitfalls which more  r igorous  
t r ea tments  of  the Schr6d inger  equa t ion  encounter ,  it is well k n o w n  [1] tha t  the 
one-d imens iona l  l imit  Ix1 - x 2 1 - 1  of  the C o u l o m b  th ree -d imens iona l  po ten t ia l  
r72 ~ be tween e lec t rons  1 and  2 gives rise to d ivergent  integrals  if we try to calculate  
the C o u l o m b  in te rac t ion  energy between pairs  of e lect rons  when the la t ter  are 
descr ibed by  one -d imens iona l  po ten t ia l  box wavefunct ions.  One  way  of avo id ing  
this difficulty for two e lec t rons  only confined be tween infinite po ten t ia l  bar r ie rs  
and  cons t ra ined  to move  in one d imens ion  is to solve the one -d imens iona l  free- 
e lec t ron Schr6dinger  equa t ion  with the C o u l o m b  in te rac t ion  Ix1 - x2L- 1 between 
the electrons [2].  Because of the b o u n d a r y  cond i t ions  at the walls of  the po ten t ia l  
box,  the p r o b l e m  of  ascer ta in ing  the eigen-values  in this case is best  pe r fo rmed  

numerical ly .  
The  occurrence  of  these infinities is a long-s tand ing  result  f rom classical  

physics,  where it is k n o w n  tha t  the m u t u a l  e lec t ros ta t ic  energy of  two two-d imen-  
s ional  charge d i s t r ibu t ions  on the same surface is finite, whereas  the mu tua l  
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electrostatic energy of two one-dimensional charge distributions (cf. self-energy 
of a line distribution) is logarithmically infinite. 

To arrive at a representation of the interaction between two electrons which 
will bear some relation to the physics of the situation and yet will enable us to 
calculate interaction integrals without giving rise to divergences, various tricks have 
been resorted to by those quantum chemists who have wished to include, say, 
~-cr interactions in the crude FE model. If we denote the distance between two 
electrons in one dimension by x, then the simplest approximation is to replace the 
true Coulomb potential function x -  1 for all x by a cut-off potential 

V(x) = 1/x, x = > D ' ; (1) 
= 0 ,  x < D ,  J 

or a slight modification 

V(x)= 1/x, x>=D, t 
=I /D,  x~=D, ~ (2) 

where D is a cut-off radius, which, for example, might be comparable to the 
electron diameter. A zero cut-off of type (1) was used by the Japanese group [3], 
and type (2) was used by the Chicago group [1]. 

Another way out of the divergence difficulty does just the opposite to this~ In 
the cut-off methods the long-range part of the Coulomb potential is retained, 
whereas-the short-range behaviour is entirely dispensed with, whereas the 
argument could be made that in any interaction integrals the major contribution 
from the Coulomb potential comes from its short-range behaviour. Thus this 
school of thought dispenses with the long-range "tail" to the Coulomb operator 
and replaces its short-range part by a new potential function which is integrable, 
namely the Dirac-delta-function: 

y(x) = g6(x) ,  (3) 

6(x)=O,  x ~ O ,  

6 ( o )  = 00, 

~6(x) dx = 1, 
- - o 0  

6(x) f(x) dx = f(O), 

where g is the strength of the potential. With this potential, the interaction integrals 
are greatly simplified, and are convergent, but Ham and Ruedenberg [1] were not 
encouraged by the results of trial calculations with a delta-function interaction. 
An extension of this model to molecules in which the electron-nuclear attractions 
are replaced by 3-functions was carried out by Frost [4]. So far as the author is 
aware, no calculations on g - g  or g - o  interactions have been carried out with 
a combination of (1) and (3), namely 

V(x)= 1/x, x > D }  
= g6(x), x < (4) 
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with g as the strength of the 6-function (a suitable choice would be g = 1). The 
potential (4) would enable us to calculate the inter-electronic interaction integrals 
without divergences, yet allows both the long- and short-range behaviour of the 
Coulomb potential to be reproduced. 

A novel way of avoiding divergences was used by Labhart [5], who expressed 
the Coulomb and exchange integrals in FEMO theory in terms of an effective 
distance between the volume elements of the interaction charge distributions, the 
effective distance being calculated theoretically in dependence of the geometrical 
distance. In practice this means using a potential 

1 
V(x) - (x 2 + aa)~ , (5) 

where a is chosen on physical considerations. This potential is now non-singular 
at the origin, and by choosing a as small as possible we may make (5) approximate 
the true Coulomb potential, to any arbitrary degree of accuracy, everywhere 
except at the origin. Obviously the addition of a 6-function at the origin might be 
expected to improve this model. 

A fourth type of approximation consists of taking a two-dimensional average 
of the three-dimensional Coulomb interaction over a transversal region with an 
area A. This will result in a non-singular one-dimensional potential, a method 
which has been used by the Japanese group and others [-6, 7]. Thus if the electrons 
are assumed to be enclosed in a very deep potential field of square-well shape so 
that their motion is predominantly along the axis of a long thin tube of transversal 
cross-sectional area A, then the effective one-dimensional potential to be used is 

1 
V([xx - x2l) = ~ ~ dYl ~ dy2 ~ dZl ~ dz2 rl-2', (6) 

where integration extends over the transversal area A of the tube. Thus Araki 
et al. [61 approximately expanded the Coulomb potential as a Fourier series 
inside a parallelopiped, and then averaged this over the rectangular transversal 
area, whereas Sternlicht [7] averaged over the circular cross-sectional area of 
a long thin cylinder. 

In the latter case, as an alternative to the method described in Ref. [7] for 
performing the average, we describe here a simple method. Constraining the 
n-electrons to move along the z-axis of a long thin cylinder, radius a, and using 
the usual cylindrical coordinates (a, z, ~b), then the well-known expansion of the 
Green's function in cylindrical coordinates is 

r;~= ~ eim(4)'-r (7) 
l~l = -- oO 0 

where the subscripts 1 and 2 refer to the two electrons involved and J is the Bessel 
function. 

For a cylindrical tube, (6) becomes 

2~ 2~ 
d~/~x 5 d(~2 i ~ d~ i (72 d~ r121 

V ( I z l  - z 2 1 )  = o o o o (8) (~a~)2 
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into which we substitute (7), so that we obtain 

V=(4/a 4) dtexp(-t[zl-Zzl)  dcr~Jo(at . (9) 
0 

The integral involving the Bessel function is easily evaluated [8], with the result 

V = - -  d t e x p - t l z l - z 2 1  [Jl(t)/t] 2, (10) 
a o a 

where we have made a slight change in the integration variable. 
An alternative way of writing (10) is [9] 

r~ 

V = (2/a~) ~ dO (1 + cos O) [(~2 + 2 - 2 cos O) ~ - c~], (11) 
0 

where 

and the right-hand side is an elliptic integral. This potential is non-singular when 
the two electrons coalesce on the axis, since it is easily shown [10] that 

16 
V(0)-  3rca (12) 

From either (8) or (11), it is readily shown that when ~ is large enough to neglect 
powers of 1/e beyond the first, then 

1 
V--* - -  (13) 

I Z l  - z 2 1  ' 

i.e., the one-dimensional Coulomb potential. This limit will obviously only occur 
if the length of the cylindrical box is much greater than the radius a. 

In a series of papers, Olszewski [11] has attempted to solve the problem of 
the one-dimensional divergences in the FEMO model by first considering electron- 
electron and electron nuclear interaction integrals for electrons moving freely 
inside a cylindrical box, with a full three-dimensional treatment of the Coulomb 
potential, and then tending to the limit of zero box radius, so that the original box 
is eventually shrunk onto the z-axis. By this device he alleged that no divergences 
show up when the transition to zero box radius is made on the three-dimensional 
integrals, but unfortunately his mathematical analysis at this point is in error, 
due to a most unlucky misunderstanding, and exactly the same logarithmic 
divergences occur as in the straight-forward one-dimensional treatment with a 
Coulomb potential. It is the purpose of this paper to demonstrate how these 
divergences occur for interaction integrals between electrons confined to a cylin- 
drical box, as considered by Olszewski [11], when the box radius shrinks to zero. 

Mathematical 

Following Nikitine and Komoss [12] we consider the solution for free electrons 
in a cylindrical box of length L, radius a, with a straightened chain of carbon atoms 
as the z-axis. Assuming the potential inside the box to be zero, rising to infinity 



188 P.J. Roberts: 

at the surface of the box, the solution has the form 

(o,l(r) = (2/L)- Nl sin (nnz/L) Jz xz , n 1, 2, 3 . . . .  (14) 

where J is the Bessel function, (a, z, qS) are the usual cylindrical coordinates, 
N is the normalisation factor, and X l is the first zero of Jg(x), so that 

J,(xt) = O. (15) 

From the normalisation integral, 

(Nz) -2 = 2n d a a  Jl xl a (16) 
0 

= na2[Jl+l(Xl)] 2 , ar (17) 

Since we wish to ultimately consider the limit 

a - * 0 ,  

we shall retain the form (16) rather than (17) throughout the analysis until the 
limit is taken. 

We shall now consider the interelectronic Coulomb interaction integral 
between electrons 1 and 2, of the type 

I = I dr1 892 ](grit( rl)12/'121 kbm~.(r2)]2 , (18) 

the integration being carried out over the whole volume of the cylinder. Inserting 
(14) and (7) into (18), and integrating trivially over the angular coordinates, we have 

a a L L 

\ / / ' 4 n  ,~2f (xz_~)f ( ~ _ ) f  f I=tTNIN~ ) 0"1 dO'l J 2  0-2 do-2 J2  x z dZl  dz  2 

o o o o (19 )  
00 

x sin k - ~ )  sin 2 dt e x p ( -  tlzl - z2l) Jo(al t) Jo(a2 t). 

0 

Interchanging the order of the t integration with the z 1, z 2 integrations, and 
completing the latter, we obtain 

1(4rc NlNx)2i dalJ~(Xl--~-~)i62da2J2(xz~- ) I = 2 \ T  al 
o o (20) 

cO 

; 'e' l x dtJo(alt)Jo(a2t) + t2 ( t~ i~+c2)  , 
0 

Where 

2n7~ 
b -  

L 

2m7~ 
m m c - -  

L 
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Since we intend to proceed to the limit a ~ 0, we shall now insert the expression 
(16) for the normalisation factors into (20), and then take the limit, where we 
observe that 

Lt  i dx x F ( x ) =  L t  a2F(a).  (21) 
a ~ O  a---~O 

0 

Hence, from (16), (20) and (21) we obtain 

Lt  I = ( 2 / L 2 ) L t  d tJg(at )  + . 
a--->O 

0 

If we now interchange the order of the limit and the integration in (22), we have 

L t  I = (2/L 2) i dt F -(Lt + e-L'  - 1) 
a ~ 0  L t2 + 

0 

for b r c, and 

,eLtl,(b2 c2)l 
( ~ 5 ~ 2 ~  c 2 + t  2 b 2 + t  2- , (23) 

oo 2f [tL +eL  1, 
Lt  I = - ~ -  dt t2 

a--+ O 

0 

(1 - e -Lt) (t 2 + 2b 2) 7 
+ (t 2 + b2)2 j , (24) 

for b = c, with a slight re-arrangement of the integrand in either case. The right- 
hand side can be shown, by elementary methods, to contain a logarithmic infinity. 
For example, the first term in the integrand of (23) or (24) can be shown, by inte- 
gration by parts, to be (after a slight change in the integration variable): 

L t + e  - L t - 1 ) = L  - - t  ( 1 - e - t ) - L ,  (25) 

0 0 

which is logarithmically divergent [13]. Since the rest of the integral in each case 
is finite, then we see that the Coulomb integral I tends logarithmically to infinity 
as the box radius shrinks to zero. The same is true for any other interelectronic 
interaction integrals, in the limit of zero radius, which agrees with the statement 
of Ham and Ruedenberg [1]. 

In the same manner it is easily shown that the electron-nuclear attraction 
integrals for the Coulomb interaction between an electron and a nucleus on the 
axis of the tube are also divergent. Denoting the cylindrical polar coordinates 
of nucleus C on the z-axis of the tube by, (0, c, 0), then the distance between an 
electron at (o., z, ~b) and the nucleus C is 

rc = [o .2 + (z - c)2] ~ , (26) 

for which the one-particle analogue of (7) is 

oo 

r[ 1 = Sd t  e x p ( -  t]z - c]) Jo(to.) , 
0 

(27) 
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with J a Bessel function as before. Now the only non-vanishing electron-nuclear 
attraction integrals are of the type 

K = f dv r162 , (28) 
O ?'c 

integrated over the whole volume of the box. Inserting (14) and (27) into (28), 
inverting the order of the t and z integrations, and integrating trivially overr we 
obtain 

K =  (2nN~/L) d a a  Jl xl dz d t e x p ( - t l z - c l ) & ( a t )  

o o o (29) 

• ( c o s ~ z  - c o s / ~ z ) ,  

where 
o: = (n - -  m)  n / L  , 

fi = (n + m) n /L .  

Hence, substituting (16) into (29) and taking the limit a ~ 0  as in (21) we find 

Lt  K = (l/L) S dz dt e x p ( -  tlz - cl) (cosaz - cosflz) (30) 
a--*O 

0 0 

where we have taken the limit inside the t integration. Thus 
L 

L Lt  K = i" dz(cosc~z-cosflz) 
a~O J Iz--cl 

0 

= sin~c Si(~c)-  cosc~c Cin(~c) 

- sinflc Si(flc) + cosflc Cin(flc) 

- sin c~c Si(c~L- c~c) - cosTc C i n ( ~ L -  c~c) 

+ sinflc S i ( f l L -  tic) + cosflc C i n ( f l L -  tiC) (31) 

+ cosec ~ -  + ~ -  

] - c o s f l c  + , 

where the sine and cosine integrals are [14] : 
x 

Si(x)= f sin~t dt 
J t ' 
0 

Cin(x) = i (1 - tc~ 

0 

(32) 
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N o w  f rom (29) we see tha t  s ince n, m are pos i t ive  in tegers , /~  is a lways  posi t ive ,  
b u t  c~ m a y  be  zero. I n  the  la t te r  case, (31) is r ep laced  by  a r a the r  s imple r  fo rmula ,  
bu t  since ~ r c~, in  e i ther  case the last  four  t e rms  in (31) give rise to l oga r i t hmic  
divergences ,  exact ly  as wi th  the two-e l ec t ron  integrals .  Hence ,  a s  before, the  
process  of s h r i n k i n g  the  cy l inder  to zero  r ad ius  after ca l cu la t ing  the  full three-  
d i m e n s i o n a l  in tegra l s  will n o t  r e m o v e  the o n e - d i m e n s i o n a l  d ivergences ,  as c la imed  
by  Olszewski  [11],  T h e  o n l y  way  to avo id  d ivergences  is to in  some  way  mod i fy  
the o n e - d i m e n s i o n a l  C o u l o m b  opera to r ,  as descr ibed  above .  
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